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Abstract

Background: Tryptophan synthase consists of two subunits, � and �. Two distinct subgroups of
� chain exist. The major group (TrpEb_1) includes the well-studied � chain of Salmonella
typhimurium. The minor group of � chain (TrpEb_2) is most frequently found in the Archaea.
Most of the amino-acid residues important for catalysis are highly conserved between both TrpE
subfamilies.

Results: Conserved amino-acid residues of TrpEb_1 that make allosteric contact with the TrpEa
subunit (the � chain) are absent in TrpEb_2. Representatives of Archaea, Bacteria and higher
plants all exist that possess both TrpEb_1 and TrpEb_2. In those prokaryotes where two trpEb
genes coexist, one is usually trpEb_1 and is adjacent to trpEa, whereas the second is trpEb_2 and
is usually unlinked with other tryptophan-pathway genes.

Conclusions: TrpEb_1 is nearly always partnered with TrpEa in the tryptophan synthase
reaction. However, by default at least six lineages of the Archaea are likely to use TrpEb_2 as the
functional � chain, as TrpEb_1 is absent. The six lineages show a distinctive divergence within the
overall TrpEa phylogenetic tree, consistent with the lack of selection for amino-acid residues in
TrpEa that are otherwise conserved for interfacing with TrpEb_1. We suggest that the stand-
alone function of TrpEb_2 might be to catalyze the serine deaminase reaction, an established
catalytic capability of tryptophan synthase � chains. A coincident finding of interest is that the
Archaea seem to use the citramalate pathway, rather than threonine deaminase (IlvA), to initiate
the pathway of isoleucine biosynthesis.
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Background 
Tryptophan biosynthesis is absent in mammals but is a

general metabolic capability of prokaryotes, eukaryotic

microorganisms and higher plants. It has been a classic

system for elucidation of gene-enzyme relationships and reg-

ulation, thanks largely to the lifelong efforts of Charles

Yanofsky [1]. Tryptophan is biochemically the most expen-

sive of the amino acids to synthesize [2]. The clustered orga-

nization of the trp genes into an operon has been a model

system for many years and continues to receive attention. In

the current genomics era, emerging surprises reveal there is

still much to learn. These surprises include the revelations

that operons are being organizationally reshuffled, invaded

by insertion of apparently unrelated genes, disrupted by

either partial or complete dispersal of genes to extra-operon

locations, or complicated by the seemingly unnecessary

presence of additional operon-gene copies located outside of

the operon.
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Tryptophan synthase, catalyzing the final step of tryptophan

biosynthesis, is one of the most rigorously documented

examples of an enzyme complex [3-6]. It consists of an

� subunit, which cleaves indoleglycerol phosphate to indole

and glyceraldehyde 3-phosphate, and a � subunit, which

condenses indole and L-serine to yield L-tryptophan. The

���� complex forms a tunnel into which enzymatically gen-

erated indole is released. The � monomers and � dimers

contact one another via highly sophisticated mechanisms of

allostery [7], and it is little wonder that the genes encoding

these two subunits are almost always closely linked, fre-

quently being translationally coupled. 

Against this background, it seems curious that a significant

number of organisms possess more than one gene encoding

the � chain of tryptophan synthase. Usually, but not always,

the ‘extra’ gene is unlinked to the gene encoding the � chain,

and it also defines a distinct subgroup of the � chain. This

has been recognized in the COGs database [8] as “alternative

tryptophan synthase” (COG 1350). In this paper we present a

detailed analysis of the distribution of the two subgroups of

the � chain in prokaryotes within the context of the surpris-

ingly dynamic past and ongoing alterations of organization

for genes responsible for tryptophan biosynthesis.

Nomenclature
In recent publications involving bioinformatic analysis of aro-

matic amino-acid biosynthesis [9-14], we have implemented a

nomenclature that attempts logical and consistent naming of

genes and their gene products for different organisms. The

problem is exemplified by the contemporary naming in two

model organisms of 3-deoxy-D-arabino-heptulosonate 7-phos-

phate (DAHP) synthase, the initial enzyme step of aromatic

amino-acid biosynthesis. In Bacillus subtilis the gene, appro-

priately enough, has been named aroA, but in Escherichia coli

the equivalent function is represented by genes encoding three

differentially regulated paralogs. These E. coli genes have been

named aroF, aroG and aroH. In B. subtilis these latter three

gene designations refer to 5-enolpyruvylshikimate-3-phos-

phate synthase (step 6 of chorismate synthesis), chorismate

synthase (step 7) and chorismate mutase (initial step of pheny-

lalanine and tyrosine biosynthesis). Even in B. subtilis, where

the naming was intended to follow an orderly progression in

terms of order of reaction steps, there is the complication that

DAHP synthase is expressed as a fusion of two catalytic

domains, one being a class of chorismate mutase called AroQ.

This requires naming at the level of domain and the desig-

nation aroQ�aroA was implemented to denote such a

fusion [9-12]. Thus, a single enzymatic function in one

organism is accommodated through the cumulative expres-

sion of three paralog genes, but in another organism is only

encoded by a portion of a single gene. A universal nomen-

clature is needed that labels at the level of domain, that

labels in synchrony with order of reaction steps as much as

possible, and that labels isofunctional paralogs at the same

hierarchical level but with discriminating identifiers.

The status of nomenclature for the tryptophan pathway is

not so chaotic as the genes in almost all prokaryotes have

been named in line with E. coli, but even here distinct prob-

lems have arisen because gene fusions that exist in E. coli are

often absent elsewhere. Much of the literature up to at least

1996 used five gene designations for the seven protein

domains [15]. In B. subtilis these seven protein domains are

encoded by separate genes [16]. Thus, E. coli trpD encodes

the equivalent of B. subtilis TrpG and TrpD. The E. coli gene

fusion has been re-designated with the convention of a bullet

to represent a fusion: trpG�trpD [17]. Likewise, the E. coli

trpC encodes the equivalent of B. subtilis TrpC and TrpF,

and the E. coli gene fusion has been re-designated

trpC�trpF. The nomenclature we advocate is more easily

remembered because genes are named in the order of

pathway reaction. Subunits for a given reaction are named at

the same hierarchical level: anthranilate synthase (first reac-

tion) consists of TrpAa and TrpAb, and tryptophan synthase

(fifth reaction) consists of TrpEa and TrpEb. The implemen-

tation of a logical and consistent nomenclature, as illustrated

in Figure 1, should be most helpful in the long term.

Results and discussion 
Phylogenetic tree construction
Initial amino-acid alignments were generated using

ClustalW software, version 1.4 [18]. Manual adjustments

were made through visual inspection to bring conserved

motifs and residues into register. This was implemented by

use of the BioEdit multiple alignment tool [19]. Inferences

about the evolutionary relationships within the TrpEa and

TrpEb protein families were made using the PHYLIP

package of programs [20]. The Protpars program was used

to generate a maximum parsimony tree, and the neighbor-

joining and Fitch programs were used to generate a dis-

tance-based tree. The distance matrix used in the latter

programs was produced using the program Protdist with a

Dayoff PAM matrix. The Seqboot and Consense programs

were then used to assess the statistical strength of the tree

using bootstrap resampling. Neighbor-joining (PHYLIP),

Fitch and Margolash (Fitch in PHYLIP), and maximum par-

simony methods [21] all produced trees consistent with one

another. Despite low bootstrap values at many individual

internal nodes, the clusters formed and arrangement of taxa

within them were largely identical. Ninety TrpEb and 63

TrpEa sequences were analyzed.

Distinctly different types of TrpEb
TrpEb proteins divide into two distinctly different groups, as

illustrated by the unrooted tree shown in Figure 2. The major

group, denoted TrpEb_1, includes the well-studied enzymes

from such organisms as E. coli, Salmonella typhimurium,

and B. subtilis. The minor group, denoted TrpEb_2, is repre-

sented heavily, but not exclusively, by archaeal proteins.

Among the current inventory of completed archaeal genomes,

only Methanococcus jannaschii lacks TrpEb_2. Seven
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archaeal genomes possess both TrpEb_1 and TrpEb_2

(Methanosarcina barkeri possesses two paralogs of TrpEb_1

in addition to one species of TrpEb_2). Six archaeal genomes

possess TrpEb_2, but not TrpEb_1.

Bacterial TrpEb_2 proteins are thus far limited to Aquifex,

Thermotoga, Mycobacterium, Geobacter, Chlorobium and

Rhodopseudomonas genera. In addition, one of the multiple

TrpEb proteins present in the higher plant, Arabidopsis

thaliana, belongs to the TrpEb_2 subfamily. In view of the

distinct divergence of TrpEb_2 from TrpEb_1, one might

expect that either TrpEb_2 has lost the ability to interact

allosterically with TrpEa, or perhaps that a divergent sub-

group of TrpEa has coevolved with TrpEb_2. Multiple copies

of TrpEb are often present in genomes. Examples include

cases where two TrpEb_1 species coexist, where two

TrpEb_2 species coexist, or where TrpEb_1 and TrpEb_2

coexist in the same organism. A number of organisms

(M. barkeri, Rhodobacter capsulatus, Chlamydia psittaci,

and Corynebacterium diphtheriae) possess two copies of

TrpEb_1. In each case the trpEb_1 copy that is linked to

trpEa is highly conserved, whereas the remaining copy has

diverged to the extent that it may be a pseudogene (Table 2).

The TrpEb_1 products of these probable pseudogenes have

elongated branches (highlighted yellow) on the protein tree

shown in Figure 2.

It is noteworthy that cyanobacterial and higher plant amino-

acid sequences form a cohesive cluster for TrpEb_1,

as shown in phylogram form in Figure 3 (left panel). An

Figure 1
Biochemical pathway of tryptophan biosynthesis. Acronyms that are currently used for the seven monofunctional proteins of Bacillus subtilis are shown in
brackets below the acronyms used in this paper. TrpAa, large aminase subunit of anthranilate synthase; TrpAb, small glutamine-binding subunit of
anthranilate synthase; TrpB, anthranilate phosphoribosyl transferase; TrpC, phosphoribosyl-anthranilate isomerase; TrpD, indoleglycerol phosphate
synthase; TrpEa, � subunit of tryptophan synthase; TrpEb, � subunit of tryptophan synthase.
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Figure 2 (see figure on the next page)
Unrooted phylogenetic tree (radial view) of the TrpEb protein family consisting of subfamily TrpEb_1 (top) and TrpEb_2 (bottom). Phylogenetic
reconstruction of the inferred amino-acid sequence was accomplished by the neighbor-joining method using the PHYLIP program. Organismal acronyms
are defined in Table 1. For economy of space, a single branch is used to represent proteins that have diverged very recently, for example, TrpEb_1
proteins from E. coli and S. typhimurium (Eco/Sty). Archaeal proteins are highlighted in magenta. The detailed order of branching for TrpEb_1 proteins in
cyanobacteria and higher plants is shown in Figure 3. Probable pseudogenes are shown in yellow.
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Figure 2 (see legend on the previous page)
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analysis of TrpEa proteins from the same organisms yields a

very similar phylogram output (Figure 3, right panel). This

higher plant/cyanobacteria relationship is pleasingly consis-

tent with the endosymbiotic hypothesis of organelle evolu-

tion. In each case Prochlorococcus marinus and

Synechococcus species are the outlying sequence group, with

the other cyanobacterial sequences (Nostoc punctiforme and

Anabaena species) being closer to the higher plant

sequences from A. thaliana and corn (Zea mays). The order

of branching shown is supported by very high bootstrap

values. Zma-3 is the TrpEa protein that has been proposed

[22] to function independently of a TrpEb partner, produc-

ing indole for entry into a pathway other than tryptophan. In

this case indole serves as a precursor for a defense metabo-

lite that is active against insects, bacteria and fungi.

TrpEa in organisms lacking TrpEb_1
Six organisms (all Archaea) possess intact tryptophan path-

ways, but they lack TrpEb_1. TrpEb in Thermoplasma vol-

canii, T. acidophilum, and Ferroplasma acidarmanus is

represented only by a single species of TrpEb_2. Although

Sulfolobus solfataricus, Aeropyrum pernix and Pyrobaculum
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Table 1

Key to sequence identifiers

NCBI GI number

Species name Acronym trpEb-1 trpEb-2

Actinobacillus Aac N/A
actinomycetemcomitans

Aeropyrum pernix Ape-1 7674393
Aeropyrum pernix Ape-2 7674395
Anabaena sp. Asp-1 N/A
Anabaena sp. Asp-2 N/A
Aquifex aeolicus Aae-1 6226273
Aquifex aeolicus Aae-2 7674374
Arabidopsis thaliana Ath-1 136251
Arabidopsis thaliana Ath-2 1174779
Arabidopsis thaliana Ath-3 10176821
Archaeoglobus fulgidus Afu-1 3334387
Archaeoglobus fulgidus Afu-2 7674372
Bacillus halodurans Bha 10174280
Bacillus stearothermophilus Bst 226585
Bacillus subtilis Bsu 136270
Bordetella pertussis Bpe N/A
Buchnera sp. APS Bsp 11182450
Campylobacter jejuni Cje 11269304
Caulobacter crescentus Ccr 136272
Chlamydia trachomatis Ctr 6226274
Chlamydia psittaci Cps-1 N/A
Chlamydia psittaci Cps-2 N/A
Chlorobium tepidum Cte-1 N/A
Chlorobium tepidum Cte-2 N/A
Clostridium acetobutylicum Cac N/A
Corynebacterium diphtheriae Cdip-1 N/A
Corynebacterium diphtheriae Cdip-2 N/A
Dehalococcoides ethenogenes Det N/A
Deinococcus radiodurans Dra 7474051
Escherichia coli Eco 136273
Ferroplasma acidarmanus Fac N/A
Geobacter sulfurreducens Gsu-1 N/A
Geobacter sulfurreducens Gsu-2 N/A
Haemophilus influenzae Hin 1174785
Halobacterium sp. Hal 14423973
Helicobacter pylori Hpy 7674399
Klebsiella pneumoniae Kpn N/A
Lactococcus lactis Lla 267168
Legionella pneumophila Lpn N/A
Mesorhizobium loti Mlo 13474230
Methanobacterium Mth-1 3334383
thermoautotrophicum

Methanobacterium Mth-2 7674371
thermoautotrophicum

Methanococcus jannaschii Mja 2501412
Methanosarcina barkeri Mba-1 N/A
Methanosarcina barkeri Mba-2 N/A
Methanosarcina barkeri Mba-3 N/A
Mycobacterium bovis Mbo N/A
Mycobacterium leprae Mle 13093205
Mycobacterium smegmatis Msm-1 N/A
Mycobacterium smegmatis Msm-2 N/A
Mycobacterium tuberculosis Mtu 3024761
Neisseria gonorrhoeae Ngo N/A
Neisseria meningitides Nme 11269306
Nitrosomonas europaea Neu N/A
Nostoc punctiforme Npu-1 N/A
Nostoc punctiforme Npu-2 N/A
Pasteurella multocida Pmu 13432266

Table 1 (continued)

NCBI GI number

Species name Acronym trpEb-1 trpEb-2

Prochlorococcus marinus Pma N/A
Pseudomonas aeruginosa Paeru 12230946
Pyrobaculum aerophilum Paero-1 N/A
Pyrobaculum aerophilum Paero-2 N/A
Pyrococcus abyssi Pab-1 14520675
Pyrococcus abyssi Pab-2 14423981
Pyrococcus furiosus Pfu-1 N/A
Pyrococcus furiosus Pfu-2 N/A
Pyrococcus horikoshii Pho 14591361
Rhodobacter capsulatus Rca-1 N/A
Rhodobacter capsulatus Rca-2 N/A
Rhodopseudomonas palustris Rpa-1 N/A
Rhodopseudomonas palustris Rpa-2 N/A
Salmonella typhimurium Sty 136281
Staphylococcus aureus Sau 13701169
Streptococcus mutans Smu N/A
Streptococcus pneumoniae Spn N/A
Streptomyces coelicolor Sco 6226276
Sulfolobus solfataricus Sso-1 14424473
Sulfolobus solfataricus Sso-2 13814334
Synechococcus sp. Syn N/A
Synechocystis sp. Ssp 2501413
Thermomonospora fusca Tfu N/A
Thermoplasma acidophilum Tac 13878841
Thermoplasma volcanium Tvo 13541762
Thermotoga maritima Tma-1 1717761
Thermotoga maritima Tma-2 7674388
Vibrio cholerae Vch 11269279
Xylella fastidiosa Xfa 11269281
Yersinia pestis Ype N/A
Yersinia pseudotuberculosis Yps N/A
Zea mays Zma-1 1174780
Zea mays Zma-2 1174778



aerophilum all possess two species of TrpEb, both are the

TrpEb_2 variety. Thus, in all six of these lineages TrpEa

either might be unable to form a tight complex with TrpEb_2,

or might have evolved different protein-protein contacts. In

the latter case, distinct TrpEa subgroupings might be

expected in parallel with the two TrpEb subgroupings. On the

contrary, all TrpEa sequences fall into a single group

(Figure 4). However, in contrast to sequences present in

those Archaea that do possess TrpEb_1 (for example,

Archaeoglobus, species of Pyrococcus, Methanococcus,

Methanobacterium, Methanosarcina and Halobacterium),

the six archaeal lineages that possess only TrpEb_2 have very

distinctive elongated branches on the TrpEa tree (Figure 4).

This suggests an elevated rate of evolutionary divergence, due

either to selection for new productive contacts of TrpEa with

TrpEb_2 or to lack of constraint to maintain TrpEa residues

previously important for contacts with TrpEb_1.

The long branch of the TrpEa sequence of Chlamydia tra-

chomatis reflects its likely status as a pseudogene. This is

consistent with the observation that C. trachomatis TrpEb_1

(Figure 2) also seems to be a pseudogene. One does not

expect positive selection for maintenance of function in

C. trachomatis as it lacks an intact tryptophan pathway.

Indeed, the alteration in C. trachomatis of many otherwise

invariant amino-acid residues is evident from the informa-

tion given in Table 2.

Overview comparison of TrpEb_1 and TrpEb_2
Figure 5 shows an alignment of the amino-acid sequence of

TrpEb_1 from S. typhimurium with TrpEb_2 from P. furio-

sus. Each sequence is shown as a template for its own sub-

family, as extracted from a refined multiple alignment.

Conserved residues deduced from a full multiple alignment

(available from the author on request) are indicated, as are

the gap positions present in the full alignment. Functional

roles in catalysis and allosteric regulation are indicated for

6 Genome Biology Vol 3 No 1 Xie et al.

Table 2

Exceptions to residue invariance

Invariant
Protein residue* Exceptions: organism (homologous residue)

TrpEa 57P Sso (A)
60D Hal (E)
61G Ctr (N)
64I Mth (V)
183T Ctr (R)
184G Hin (S)
211G Ctr (R)
212F/L Ctr (R)
213G Ctr (D) Paero (A) Ape (S)
234G Ctr (K)

TrpEb_1 10G Ctr (H) Cps-2 (E) Cps-1 (Y)
21L Cje (A)
41F Asp-1 (Y)
55R Mth-1 (K)
78E Ccr (D)
79D Rca-1 (E) Paeru (E) 
80L Mth-1 (M) Dra (Q)
82H Mba-2 (Q) Dra (F)
94Q Rca-2 (E)
96L Rpa-1 (M) Spn (W) Bsp (M)
97L Cps-2 (I)
102G Bsp (K)
114Q Rpa-1 (M) Paeru (M)
124A Zma-2 (R) Cps-1 (G)
133F/Y Rca-2 (H)
141R Rca-2 (K)
146V Mba-1 (A)
149M Cps-2 (I)
153G Hal (D)
156V Cje (I)
159V Bha (A) 
162G Cdip-2 (E)
167K Cdip-2 (S) Sau (S)
173A Hal (T) Rca-2 (C)
177W Cps-2 (F) Rca-2 (Y)
186Y Cps-2 (F) Rca-2 (F)
208I Xfa (V)
213R/K Bpe (L)
224P Cje (V)
225D Bha (T) Rca-2 (A)
267H Rca-2 (N)
269A Sau (L) Mba-1 (S)
274G Aac (A)
299S Rca-2 (T)
310G Mba-2 (S)
345I Rca-2 (V)
383D Yps (E)

Invariant
Protein residue† Exceptions: organism (homologous residue)

TrpEb_2 P10 Paero-1 (gap)
Y14 Aae-2 (L)
E54 Sso-1 (Q)
L86 Msm-2 (F)
E87 Paero-2 (D)
E101 Paero-2 (Q)
S108 Paero-2 (N)
A114 Mba-3 (S)
W138 Sso-1 (R)
G176 Fac (N)

Table 2 (continued)

Invariant
Protein residue† Exceptions: organism (homologous residue)

S184 Sso-1 (T)
S203 Fac (T)
I206 Msm-2 (M)
A207 Fac (G)
S209 Ape-1 (A)
E210 Sso-2 (D)
G226 Fac (A)
N265 Paero-2 (S)
P272 Mba-3 (E)
G300 Cte-2 (A)
F/Y325 Mba-3 (H)
F371 Ape-1 (M)
P379 Fac (A)
S410 Ath-3 (C)

*Residues are numbered according to the S. typhimurium sequence.
†Residues are numbered according to the P. furiosus sequence. 



the S. typhimurium TrpEb_1 sequence in order to compare

similarities and differences between TrpEb_1 and TrpEb_2

proteins. Residues that are ligands of pyridoxal phosphate or

that interact with pyridoxal phosphate are scattered

throughout the sequences, including the catalytic K87, and

are highly conserved. Residue E109 has been shown to

render indole more nucleophilic via proton abstraction from

N1 [23]. The serine substrate-binding region is highly con-

served, as is a monovalent cation (MVC) binding region [7]

coordinating with G232, F/Y306, and G/A/S308. A number

of indels (insertions/deletions) distinguish TrpEb_1 and

TrpEb_2, and TrpEb_2 is about 50 residues longer overall

than TrpEb_1. In addition to other residues conserved

between both TrpEb_1 and TrpEb_2, each subgroup has its

own repertoire of uniquely conserved residues. The COMM

domain [24], a rigid but mobile domain as originally defined

with S. typhimurium TrpEb_1 [25], differs from the corre-

sponding region of the TrpEb_2 subfamily by the presence

of an indel. Key TrpEb_1 regulatory residues (R141, K167)

within this region as well as one residue near the MVC site

(D305) are not conserved in the TrpEb_2 subgroup.

Loss of intersubunit contacts in TrpEa-TrpEb_2
systems
The tryptophan synthase of S. typhimurium is a rigorously

documented example of substrate channeling in which

indole generated as an intermediate is passed through an

internalized tunnel ([7] and references therein). Ligand

binding at the �-site and covalent transformations at the

�-site accomplish mutually reinforcing overall allostery. The

movable COMM domain is comprised of residues G102 to

G189 in S. typhimurium TrpEb_2. COMM interacts with

both the �-active site and with �-subunit loops 2 and 6 in

response to allosteric signals. Within the COMM domain of

TrpEb_1, S178 participates in intersubunit signaling with

G181 of TrpEa. Competing allosteric conformations are

mediated by alternative salt bridges between K167 of

TrpEb_1 and D305 of TrpEb_1 on the one hand, or between

K167 of TrpEb_1 and D56 of TrpEa, on the other. When

D305 of TrpEb_1 is not occupied with K167, it forms an

alternative salt bridge with R141, as shown in Figure 5.

As intersubunit signaling between TrpEb_2 and TrpEa is

either lacking or involves different contacts, one might

expect the important catalytic residues, but not the allosteric

residues, to be conserved in comparison of TrpEb_2 with

TrpEb_1. This comparison is shown in Figure 5. Likewise, in

those TrpEa proteins that lack a TrpEb_1 partner, instead

being forced to function in concert with TrpEb_2, one might

expect retention of catalytic residues but loss of allosteric

residues. This comparison is shown in Figure 6. Of the inter-

subunit signaling pair TrpEb_1 S178/TrpEa G181, S178 is

not conserved within its own subfamily and equivalent

residues seem to exist [26]. It is, however, striking that G181

is invariant in all TrpEa proteins, except for those belonging

to the six archaeal lineages lacking TrpEb_1. It is even more

striking that K167, which participates in the alternative �-�

or �-� salt bridges is invariant in TrpEb_1, but absent in

TrpEb_2. Likewise, the salt-bridge partner D305 is invariant

in TrpEb_1, but absent in TrpEb_2. The salt-bridge partner

D56 in TrpEa is invariant except for the six archaeal lineages

that lack TrpEb_1. Figure 5 shows that TrpEb_2 sequences

carry an insertion of 16 residues in the general region corre-

sponding to the COMM domain of TrpEb_1 proteins.

Tryptophan gene organization in TrpEb_2-containing
genomes
The organization of tryptophan-pathway genes in the ten

archaeal genomes and six bacterial genomes that are thus far

known to possess TrpEb_2 are displayed on a 16S rRNA tree
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Figure 3
Unrooted phylogenetic tree (phylogram view) of cyanobacterial and higher plant TrpEb_1 (zoom-in expansion from Figure 2) and TrpEa (zoom-in
expansion from Figure 4) protein sequences. The higher-plant lineage is shown in green. Bootstrap values (from 1,000 replications) supporting the order
of branching shown are given at the nodes.
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in Figure 7. Pyrococcus horikoshii has lost the entire

pathway, and only trpEb_2 is present. In Aquifex and

Chlorobium all trp genes are dispersed, and trpEa is not

linked to either trpEb_1 or trpEb_2. In Bacteria and

Archaea the gene order trpEb_1 � trpEa is one of the most

highly conserved of genomic gene arrangements. Often

translational coupling exists, as seen in Figure 7 for P. furio-

sus, P. abyssi, M. thermoautotrophicum, T. volcanium,

Archaeoglobus fulgidus and T. maritima. In each of the

latter genomes trpEb_2 is outside the trp operon. Both

species of Thermoplasma possess an otherwise intact trp

operon that lacks trpEb_1 (also not present elsewhere in the

genome). Hence, by default it appears that the unlinked

trpEb_2 must function for tryptophan biosynthesis in these

organisms. In A. pernix and S. solfataricus all of the trp

genes are adjacent, but trpEb_2 flanks trpEa, and trpEb_1 is

absent from these genomes. In each case, a second unlinked

copy of trpEb_2 is present. In Geobacter sulfurreducens,

both trpEa and trpEb_1 (presumably partnered based on the

results shown in Figure 4) are unlinked to one another, and

8 Genome Biology Vol 3 No 1 Xie et al.

Figure 4
Unrooted phylogenetic tree (radial view) of the TrpEa protein family. Organismal acronyms are defined in Table 1. Phylogenetic reconstruction of the
inferred amino-acid sequence was accomplished by the neighbor-joining method using the PHYLIP program. The detailed order of branching for
cyanobacterial and higher-plant sequences is shown in Figure 3. Archaeal proteins are visualized in magenta, and the yellow line indicates the TrpEa
protein from C. trachomatis, which is probably encoded by a pseudogene.

0.1
BhaBsuCje

Sau

Spn

Smu

Cac
Tma

Cte

Ctr

Det

Dra Msm

Mtu/Mbo

Sco

Tfu

Gsu Xfa
Neu

Nme/Ngo

Paeru
Rpa

Rca
Aae

Mle

Paero

Ape

Tac

Tvo

Fac

Sso

Cyanobacteria and
             higher plants

Hpy

Cdip
Vch

Ype
Eco/Sty

PmuHin
Aac

Pfu

Pab Afu

Hal
Mth

Mja

Bsp

Cps

Mba



both are outside an otherwise intact trp operon. In this case it

seems curious indeed that the operon contains trpEb_2.

A snapshot of the incredibly dynamic alteration of trypto-

phan gene organization in prokaryotes is apparent from

Figure 7. Of the organisms shown in Figure 7, the most con-

sistent linkage is that of trpAa and trpAb. In A. fulgidus

trpD and trpB are fused, whereas in Rhodopseudomonas

palustris trpAa and trpAb are fused. Operons are sometimes

incomplete as with P. aerophilum and G. sulfurreducens, or

fragmented, as with R. palustris. In A. pernix an inverted

arrangement yields a divergent transcription of trpEa �

trpEb_2 � trpC � trpD and trpB � trpAa � trpAb. This is

also one of the very few cases where the order is trpEa �

trpEb instead of the usual trpEb � trpEa.

The Ferroplasma genome illustrates a case where a non-

tryptophan pathway gene, aroA encoding DAHP synthase, is a

member of the operon (translationally coupled). The implied

transcriptional control of DAHP synthase by L-tryptophan

potentially could produce growth inhibition by L-tryptophan

because of limitation of precursors needed for L-phenylala-

nine and L-tyrosine biosynthesis. This is because no other

genes encoding DAHP synthase appear to be present in the

genome. It would be interesting to know whether the Ferro-

plasma DAHP synthase is sensitive to allosteric control or

not. The phenomenon of growth inhibition triggered by

exogenous amino acids is exemplified by the effect of exoge-

nous L-phenylalanine upon DAHP synthase in Neisseria

gonorrhoeae [27] and in other organisms ([27] and refer-

ences therein).

What is the function of TrpEb_2? As previously discussed, it

seems clear that TrpEb_2 has sometimes been pressed into

service with TrpEa to function as tryptophan synthase. What

might be its function in those situations where trpEb_2 is

isolated away from a typical tryptophan operon, which pos-

sesses closely linked or translationally coupled genes speci-

fying trpEa and trpEb_1? 

TrpEb_1 from S. typhimurium is the prototype member

of a superfamily of pyridoxal phosphate (PLP)-dependent
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Figure 5
Alignment of TrpEb_1 from S. typhimurium (Sty) and of TrpEb_2 from P. furiosus (Pfu-2). The sequences are shown as they appear in a comprehensive
alignment, including gaps. Invariant residues in each subfamily are highlighted and near-invariant residues (delineated in Table 2) are shaded. Invariant or
near-invariant residues common to both subfamilies are boxed. Residues shown in Sty to be relevant to metal coordination or to the binding of indole,
serine or PLP are color-coded as indicated at the bottom.

 Sty      1       MTTLLNPYFG---EFGGMYVPQILMPA------LNQLEEAFVRAQKDPE--------FQAQFADLLKNYAGRPTALTKCQNITAGTR--------  70  
                          
 Pfu-2    1 MKVVLPDGRIPRRWYNILPDLPEPLAPPLDPET-NEPVDPKKLERIFAKELVKQEMSTKRYIKIPEEVRKMYSKIG-RPTPLFRATNLEKYLNTP------  93  
                                                                          
  
 
 
                                                                         
 Sty     71 ---TTLYLKREDLLHGGAHKTNQVLGQALLAKRMGKSEIIAETGAGQHGVASALASALLGLKCRIYMGAKDVERQSPNVFRMRLMGAEVIPVHS-----GS 163 
 
 Pfu-2   94 ---ARIYFKFEGATVTGSHKINTALAQAYYAKKEGIERLVTETGAGQWGTALSLAGALMGIKVRVYMARASYEQKPYRKVLMRIYGAEVFPSPSENTEIGK 191  
                                                                         
 
 
 
                                                                       
Sty     164 A-----------TLKDACNEALRDWSGSYETAHYMLGTAAGPHPYPTIVREFQRMIGEETKAQILDKEG--RLPDAVIACVGGGSNAIGMFADFINDTS-- 249 
 
Pfu-2   192 R-FLSENPNHPGSLGIAISEAIEDVLKDE-KARYSLGSVLN---H---VLMHQTVIGLEAKQQMEEFEE----PDVIIGCVGGGSNFAGLA--YPFVKEVL 278 
                                                                        
 
 
 
                                                                       
Sty     250 --------------VGLIGVEPGGHGIETGE------HGAPLKHGR--VGIYFGMKAPMMQTADGQIEESYSISAGLDFPSVGPQHAYLNSIGRADYVSIT 328 
 
Pfu-2   279 DG---------DNEYEFIAVEPKAAPSMTRG------VYT-YDFGDS-GELTPKLKMHTLGHR---YHVPPIHAGGLRYHGVAPTLSVLVNNGIVKPIAYH 359  
                                                                       
 
 
  
                                                                    
Sty     329 DDEALEAFKTLCRHEGIIPALESSHALAHALKMMREQPEK--EQLLVVNLSGRGDKDIFTVHDILKARGEI                               397 
 
Pfu-2   360 QTEVFEAAALFAKLEEIVPAPESAHAIKATIDKAIEAKREGKEIVILFNLSGHGLLDLHGYEEYLEGRLQDYEPKDLPISNPLNPKP               446 
                                                                     

R 

R 

K 

K 

E 

E 

L 

L 

A 

A 

E 

E 

Q 

Q 

Y/F F/Y 

G/A 

G/A Q/N 
A/S 

87 86 

Indole PLP Serine Metal 

HA 

HA

E 

E 

A 

A 

EG 

EG 

E/Q 

E-350 

G 

G 

D 

D 

G 

G 

377 378 

ETGAG 

ETGAG 

G 

G 

110 109 114 

G 

G 

HK 

HK 

N 

N 

167 

P 

P 

GL 

GL 

S 

G 

F 

Y 

F/Y-306 
303 

G/A/S-308 

G 

G 

Y 

Y 

S/T-190 

Comm domain 

K 

305 

D-56 G-181 

M 

M G 

P 

P 

F/Y 

M+ 

GGGSN 

GGGS N 

232-236 

Salt bridge 

Salt bridge 

D

141 

178 

Y/F 
R 



enzymes that are of remote relationship and that catalyze

�-replacement and �-elimination reactions [28-30]. These

include O-acetylserine sulfhydrylase, threonine deaminase,

threonine synthase, cystathionine �-synthase, 1-aminocyclo-

propane-1-carboxylate deaminase, L-serine dehydratase, and

D-serine dehydratase. Isolated TrpEb_1 does catalyze the

reaction of L-serine dehydratase (deaminase) in vitro, but

does not support significant levels of the other activities. It

does not seem likely that TrpEb_2 catalyzes the latter reac-

tions either, as Psi-Blast of TrpEb_2 sequences did not

return hits for them any more avidly than was the case for

TrpEb_1 queries.

Perhaps the most likely ‘alternative’ function of TrpEb_2

proteins is a catalytic activity already established as an in

vitro activity of isolated TrpEb_1, of which there are two.

The L-serine + indole � H2O + L-tryptophan reaction might

function alone for tryptophan biosynthesis in cells that

acquire indole from the environment. Little information

about the availability and utilization of indole in nature

seems to exist. Model organisms such as E. coli and B. sub-

tilis transport indole poorly and it tends to be toxic, but

these organisms lack TrpEb_2. 

As stated above, the second established in vitro activity of

isolated TrpEb_1 dimers is L-serine dehydratase (deami-

nase): L-serine � pyruvate + ammonia. It is indeed sugges-

tive that the presence of TrpEb_2 correlates almost perfectly

with the absence of the primary L-serine deaminase

(COG1760) used in nature (Table 3). This SdaA class of

serine deaminase is an iron-sulfur protein, not a pyridoxal

5�-phosphate protein [31]. It is absent from the Archaea.

Although widely distributed in the Bacteria, it is not present

in Thermotoga, Aquifex, Chlorobium, Geobacter and

Rhodopseudomonas. Mycobacterium smegmatis is the only

TrpEb_2-containing organism to possess an SdaA homolog.

There are other candidates for carrying out the serine deami-

nase reaction. A serine deaminase that is PLP-dependent

exists in eukaryotes, but seems to be absent or rare in

10 Genome Biology Vol 3 No 1 Xie et al.

Figure 6
Alignment of TrpEa from S. typhimurium with TrpEa proteins restricted to co-function with a TrpEb_2 type of � subunit. Catalytic residues Sty E49 and
D60, as well as other conserved residues shown to be important for indoleglycerol phosphate binding are shown in blue. Other invariant (highlighted) or
near-invariant (shaded) residues are marked in yellow. Conserved residues that important for intersubunit signaling with TrpEb_1 are shown in green.

Sty    1   MERYENLFAQLNDRREGAFVPFVTLGDPG--IEQSLKIIDTLIDAGADALELGVPFSDPLADGPTIQNANLRAFAAGVTPAQCFEMLALIRE----KHPTIPIGLLMYAN 104

Tac    1   ------------------MKPFVYFTLGY---RYDAIAEFMRNSDGVYAFEFGFPTSKPVYDGIRIRKTHDPELNR--YSEAENSRIFKIAD----DIGSKKYALMYYEV 83
Tvo    1   ------------------MKPFVYFTLGY---KYNEVKKFIKNSDGVYAFEFGFPTENPLYDGKKIKATHSFAVNK--FSHDDNAEIFKLAE----SMGIKKYALLYYSV 83
Fac    1   ---------------MKNLIPYFTLGYPN--NETLSHFLDLIPVDKINYIEFGFPSNDPRYDGPVIRKTHNVGNIN-FSDDFYKKYFDHFHK------NHVKMYSLSYYS 86
Sso    1   ------------MEMGKMLVVYMTLGYPN--VQSFKDFIIGAVENGADILELGIPPKYAKYDGPVIR--KSYDKVKGLDIWPLIEDIRKDVG--------VPIIALTYLE 86
Paero  1   ------------MLSKPGLGVYLVASWPS---KDTYEKAIRGLEGIADFFELGLPSKNPKYDGPFIRKAHREAGEP-----------LWLRP-------QAPTYIMTYWE 77
Ape    1   -----------MAIARPGFSVYLTIAWPS--PDTFLEIASTLKGC-VDYLELGIPTPKPLYDGPTIRLTHLKAVESGYSGPKTLSLAEEASQ-----EAGVPYIVMAYAT 91

Sty    105 LVFNNGIDA----FYARCEQVGVDSVLVADVPV----EESAPFRQAALRHNIAPIFICPPNADDDLLRQVASYGRGYTYLLSRSGVTGAENRGAL---P-LHHLIEKLKE 202

Tac    84  LSANPGILD-------YLNRNGFAGAILPDLMIDH-RDAFFDAVERLRQYSLDYVPFVTPITPVKVMEEQIAAGGDWIYQGMM-PATGVQLPYS------IDAIYNHIRP 178
Tvo    84  FSGKKGILD-------YLSSSRFDGVMVPDVGIDY-PDRIEQVAKAIADHGMDYVPFVTPVTPFKIMERQMKVSGEIVYQGMM-PATGIQLPYD------IGTIYGHIRD 178
Fac    87  D-IKARFDE----FIDYLQKRNFSGIIIPDLIIDY-YSEGKEIINKLNDRGFEYIPFFSPSTPDSIIKDVSSMTNSWIYYGLQ-PSTGIDIPYE------LDYTTERINE 183
Sso    87  D-WVDQLEN----FLNMIKDVKLDGILFPDLLIDY-IDDLDKIDGIIKNKGLKNVIFTSPSVPDLLIHKVSKISDLFLYYGVR-PTTGVPIPVS------VKQLINRVRN 183
Paero  78  E-HRGNLDG----LFTLAAEIRARGVLAPDLLIDFP-EELELYLKYAREYALAPAFFVPGKFPHWLVKRLTSAEPDFIYLGLY-AATGVELPVY------VERNVKIIRQ 174
Ape    92  E-QPWSFSE----VLREASRKGALSVLPPDLPFELP-GHVEWYVEESRRLGMEPSLFASPKFPHRWLDRYRRLDPLLIYLGLQ-PATGVKLPLA------FLRNVKTARK 188

Sty    203 YHAA---PALQGFGISSPEQVSAAVRAGAAGAISGSAIVKIIEKNLA----------SPKQMLAE----LRSFVSAMKAASRA---------- 268

Tac    179 YAGGK--RIVYGFGIRDAGTMKMLASYEAFGIAVGTAVVEMMENL----------------DTAS----YRRLIETIMEA------------- 236
Tvo    179 FTSGK--RIVYGFGIRNKCTIAKIAKYGGFGIAVGTAVVEMLDDG----------------NVKA----YRQLINDILGAS------------ 237
Fac    184 LLPGR--EITYGFGIKTDDDIRDLMKNGGSGVAIGTYLIKMTEAG----------------DEKG----FIDYINKMRGVLDE---------- 244
Sso    184 LVEN---KLIVGFGLSSESDLRDALSAGADGIAIGTVFIEEIERN----------------GVKS----AINLVKKFRAILDEYK-------- 245
Paero  175 LAGD--VYIVAGFAIDSPSKAARLIEAGADGVVVGTAFMRRLQNS-----------------VDS----ALSFLKSIKEALK----------- 233
Ape    189 IVGQ--VYMLAGFSIKSPEDALRVLEAGADAVVVGSEVARLVSSG----------------RLGE----ARHLACSIRAAISERGG------- 252
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prokaryotes. Threonine dehydratase has a lesser capability

to carry out the serine dehydratase reaction in vitro. ‘Biosyn-

thetic’ (IlvA) and ‘catabolic’ (TdcA) threonine deaminase are

homologs, except that IlvA has a unique carboxy-terminal

extension that provides an allosteric module. Most archaea

lack ilvA, and only a limited number possess catabolic threo-

nine dehydratase. 

If archaea lack ilvA, what is the source of �-ketobutyrate for

isoleucine biosynthesis? It appears likely that �-ketobutyrate

is generated instead by the ‘pyruvate’ pathway in which cit-

ramalate is generated as the initial intermediate. A few

tracer studies in the older literature have indicated deriva-

tion of �-ketobutyrate from pyruvate rather than from threo-

nine [32,33], and (R)-citramalate synthase activity has been

shown recently in M. jannaschii (MJ1392) [34]. This

pathway was initially shown to exist in Leptospira [35], and

it seems likely that more examples will surface. Indeed, it is

interesting that an enteric bacterium has a latent potential to

replace the threonine deaminase step with a pyruvate-

derived pathway under appropriate selective conditions

[36]. The citramalate pathway for conversion of pyruvate to

2-ketobutyrate involves a carbon-chain elongation mecha-

nism that uses an initial step of condensation with acetyl-

CoA, followed by rearrangement, oxidation and elimination

of a carbon to produce a keto acid differing from the original

substrate by the presence of an additional carbon. This

mechanism is familiar in nature, analogous steps being used

in the TCA cycle, the ketoadipate pathway of lysine biosyn-

thesis, and in leucine biosynthesis. These analogous steps in

different pathways were originally used in formulating the

recruitment hypothesis for evolutionary acquisition of new

function [37], and it is interesting that the citramalate syn-

thase gene shown in M. jannaschii had previously been

annotated as �-isopropylmalate synthase (which catalyzes

the initial step of leucine biosynthesis).
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Figure 7
Organization of tryptophan-pathway genes in those archaea and bacteria that possess trpEb_2. The 16S rRNA tree of the organisms that possess trpEb_2
is shown at the left. The tree was obtained from the SUBTREE program of the Ribosomal Database [41,42]. Each of the eight genes is color-coded
differently. For economy of space trpD is D, trpC is C, etc. aroA in F. acidarmanus belongs to the AroAI� grouping [12]. Flanking genes are shown as boxes
touching one another with intergenic spacing indicated. Minus values indicate translational coupling. The open gray box is a conserved hypothetical
protein. Pointed box ends indicate the direction of transcription. Space between boxes indicates a lack of genetic linkage.
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Overall, the cumulative evidence indicates that established

sources of L-serine dehydratase are low or absent in organ-

isms that possess TrpEb_2, and therefore points to a plausi-

ble role for TrpEb_2 as L-serine dehydratase.
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